Preparation and characterization of a novel macroporous silica-bipyridine asymmetric multidentate functional adsorbent and its application for heavy metal palladium removal
Author:
Publisher
Elsevier BV
Subject
Health, Toxicology and Mutagenesis,Pollution,Waste Management and Disposal,Environmental Chemistry,Environmental Engineering
Reference52 articles.
1. Heck reactions with various types of palladium complex catalysts: application of multiphase catalysis and supercritical carbon dioxide;Bhanage;J. Organomet. Chem.,2003
2. Monoligated palladium species as catalysts in cross-coupling reactions;Christmann;Angew. Chem. Int. Ed.,2005
3. Hydrogen storage in Pd nanocrystals covered with a metal–organic framework;Li;Nat. Mater.,2014
4. Enhanced hydrogen storage by palladium nanoparticles fabricated in redox-active metal–organic framework;Cheon;Angew. Chem. Int. Ed.,2009
5. Palladium-catalyzed cross-coupling reactions in the synthesis of pharmaceuticals;King;Top. Organomet. Chem.,2004
Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Newly synthesised diglycolamide functionalised silica gel with terminal 2-ethylhexyl alkyl chain, Silica-DGA (2EH) having high ligand density for adsorption of trivalent actinide and lanthanide from acidic medium;Chemical Engineering Research and Design;2024-09
2. Precise separation and efficient recovery of Pd(II) from high-level liquid waste by XAD-based adsorbents;Rare Metals;2024-06-14
3. Precise recognition and efficient recovery of Pd(II) from high-level liquid waste by a novel aminothiazole-functionalized silica-based adsorbent;Chemosphere;2024-02
4. Highly efficient and selective adsorption of palladium(II) from simulated nuclear waste solution using Amberlite XAD-7 resin impregnated with a phenanthroline-derived diamide;Hydrometallurgy;2023-08
5. Efficient separation of palladium from high-level liquid waste with novel adsorbents prepared by sulfhydryl organic ligands containing imidazole, thiazole and oxazole composited with XAD7HP;Journal of Water Process Engineering;2023-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3