Gas-liquid flow regimes identification using non-intrusive Doppler ultrasonic sensor and convolutional recurrent neural networks in an s-shaped riser

Author:

Kuang BoyuORCID,Nnabuife Somtochukwu GodfreyORCID,Sun Shuang,Whidborne James F.ORCID,Rana Zeeshan A.ORCID

Funder

Tianjin Municipal Education Commission

National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipal Science and Technology Commission

Publisher

Elsevier BV

Reference54 articles.

1. Flow regime and volume fraction identification using nuclear techniques, artificial neural networks and computational fluid dynamics;Affonso;Appl. Radiat. Isot.,2020

2. A unique methodology of objective regime classification for two phase flow based on the intensity of digital images;Chakraborty;Exp. Therm Fluid Sci.,2018

3. Flow regime identification and classification based on void fraction and differential pressure of vertical two-phase flow in rectangular channel;Chalgeri;Int. J. Heat Mass Transfer,2019

4. Doppler ultrasound: physics, instrumentation, and clinical applications;Cobbold;J. Biomed. Eng.,1989

5. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks;Deng;Neural Netw.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3