1. Abitbol, J.L., Karsai, M. Socioeconomic correlations of urban patterns inferred from aerial images: interpreting activation maps of Convolutional Neural Networks. arXiv, Apr. 10, 2020. Accessed: Sep. 05, 2023. [Online]. Available: http://arxiv.org/abs/2004.04907.
2. Benhammou, Y., et al., “Sentinel2GlobalLULC: A Sentinel-2 RGB image tile dataset for global land use/cover mapping with deep learning,” Sci Data, vol. 9, no. 1, Art. no. 1, Nov. 2022, doi: 10.1038/s41597-022-01775-8.
3. The effect of urban morphology on urban heat island in the city of Biskra in Algeria;Boukhabla;Int. J. Ambient Energy,2013
4. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability;Chakraborty;Int. J. Appl. Earth Obs. Geoinf.,2019
5. The challenge of noise pollution in high-density urban areas: relationship between 2D/3D urban morphology and noise perception;Chen;Build. Environ.,2024