CF-Loss: Clinically-relevant feature optimised loss function for retinal multi-class vessel segmentation and vascular feature measurement
-
Published:2024-04
Issue:
Volume:93
Page:103098
-
ISSN:1361-8415
-
Container-title:Medical Image Analysis
-
language:en
-
Short-container-title:Medical Image Analysis
Author:
Zhou YukunORCID,
Xu MouChengORCID,
Hu Yipeng,
Blumberg Stefano B.ORCID,
Zhao An,
Wagner Siegfried K.ORCID,
Keane Pearse A.ORCID,
Alexander Daniel C.
Reference62 articles.
1. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes;Akil;PLoS One,2017
2. Robust vessel segmentation in fundus images;Budai;Int. J. Biomed. Imaging,2013
3. Systemic determinants of peripapillary vessel density in healthy African Americans: the African American eye disease study;Chang;Am. J. Ophthalmol.,2019
4. Retinal vessel segmentation using deep learning: a review;Chen;IEEE Access,2021
5. Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y., 2019. Learning active contour models for medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11632–11640.