1. Fast high-dimensional filtering using the permutohedral lattice;Adams,2010
2. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R. T., Berger, C., Ha, S. M., Rozycki, M., et al., 2018. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629.
3. Çiçek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., Ronneberger, O., 2016. 3D U-Net: learning dense volumetric segmentation from sparse annotation. International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer. 424–432,
4. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs;Chen;IEEE Trans. Pattern Anal. Mach. Intell.,2017
5. An end-to-end approach to semantic segmentation with 3D CNN and posterior-CRF in medical images;Chen,2018