1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. https://www.tensorflow.org/.
2. Abbasi-Sureshjani, S., Amirrajab, S., Lorenz, C., Weese, J., Pluim, J., Breeuwer, M., 2020. 4D semantic cardiac magnetic resonance image synthesis on xcat anatomical model. arXiv preprint arXiv:2002.07089
3. The FEniCS project version 1.5;Alnæs;Arch. Numer. Softw.,2015
4. High-resolution data assimilation of cardiac mechanics applied to a dyssynchronous ventricle;Balaban;Int. J. Numer. Methods Biomed. Eng.,2017
5. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?;Bernard;IEEE Trans. Med. Imaging,2018