1. Inverse Uncertainty Quantification using the Modular Bayesian Approach based on Gaussian Process, Part 1: Theory;Wu;Nucl. Eng. Des.,2018
2. Baccou, J., Bestion, D., Couplet, M., Damblin, G., Fillion, P., Fouet, F., Freixa, J., Looss, B., Mendizábal, R., Oh, D., Petruzzi, A., Probst, P., Reventos, F., Skorek, T., Takeda, T., Zhang, J., 2018, SAPIUM: A systematic approach for input uncertainty quantification. Published in Proceeding on International Conference BEPU-2018, May 13-18, Lucca (Italy).
3. Bajorek, S.M., Bernard, M., Gingrich, C., Hoxie, C.L., Ireland, A., Kelly, J., Mahaffy, J., Murray, C., Spore, J., Staudenmeier, J., Thurgood, M, Tien, K, and Whitman, J., Development, Validation, and Assessment of the TRACE Thermal-Hydraulic System Code, NURETH-16, Chicago, IL, August 30-September 4, 2015.
4. Bajorek, S.M., Gavrilas, M., Gingrich, C., Han, J., Hogan, K., Kelly, J., Krotiuk, W., Lauben, N., 2019. TRACE V5.0 TRAC/RELAP Advanced Computational Engine Code V5 Theory manual, NUREG/BRNRC development group code, 2019, TRACE V5.0 TRAC/RELAP Advanced Computational Engine Code V5 Theory manual, NUREG/BR.
5. Introduction to Multicanonical Monte Carlo Simulations;Berg;Fields Inst. Commun.,2000