Experimental measurement and modeling of water-based drilling mud density using adaptive boosting decision tree, support vector machine, and K-nearest neighbors: A case study from the South Pars gas field
Author:
Funder
Academy of Neonatal Nursing
Publisher
Elsevier BV
Subject
Geotechnical Engineering and Engineering Geology,Fuel Technology
Reference39 articles.
1. Artificial neural network model for predicting the density of oil-based muds in high-temperature, high-pressure wells;Agwu;J. Petrol. Explor. Prod. Technol.,2020
2. Artificial intelligence techniques and their applications in drilling fluid engineering: a review;Agwu;J. Petrol. Sci. Eng.,2018
3. Toward reliable model for prediction drilling fluid density at wellbore conditions: a LSSVM model;Ahmadi;Neurocomputing,2016
4. An accurate model to predict drilling fluid density at wellbore conditions;Ahmadi;Egypt. J. Pet.,2018
5. An introduction to kernel and nearest-neighbor nonparametric regression;Altman;Am. Statistician,1992
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Drying shrinkage and crack width prediction using machine learning in mortars containing different types of industrial by-product fine aggregates;Journal of Building Engineering;2024-09
2. Rheological and Filtration Property Enhancement of a Water-Based Drilling Mud Using Modified Graphene Nanoplatelets Derived from Kenaf Stem;SPE Nigeria Annual International Conference and Exhibition;2024-08-05
3. Improving the characteristics of water-based mud using titanium dioxide doped with activated carbon prepared from grapefruit waste material;Chemical Papers;2024-07-30
4. Comparison of prediction models for soy protein isolate hydrolysates bitterness built using sensory, spectrofluorometric and chromatographic data from varying enzymes and degree of hydrolysis;Food Chemistry;2024-06
5. A Developed Robust Model and Artificial Intelligence Techniques to Predict Drilling Fluid Density and Equivalent Circulation Density in Real-Time;Day 1 Mon, February 12, 2024;2024-02-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3