Architecting ML-enabled systems: Challenges, best practices, and design decisions

Author:

Nazir Roger,Bucaioni Alessio,Pelliccione Patrizio

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Mälardalens högskola

Stiftelsen för Kunskaps- och Kompetensutveckling

Publisher

Elsevier BV

Subject

Hardware and Architecture,Information Systems,Software

Reference56 articles.

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. {TensorFlow}: a system for {Large-Scale} machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation. OSDI 16, pp. 265–283.

2. Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B., Zimmermann, T., 2019. Software engineering for machine learning: A case study. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice. ICSE-SEIP.

3. Continuously reproducing toolchains in pattern recognition and machine learning experiments;Anjos,2017

4. Baylor, D., Breck, E., Cheng, H.-T., Fiedel, N., Foo, C., Haque, Z., Haykal, S., Ispir, M., Jain, V., Koc, L., et al., 2017. Tfx: A tensorflow-based production-scale machine learning platform. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 1387–1395.

5. Artificial intelligence for the early design phases of space missions;Berquand,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Architecting Sustainable MLOps: A Self-Adaptation Approach;2024 IEEE 21st International Conference on Software Architecture Companion (ICSA-C);2024-06-04

2. Machine learning experiment management tools: a mixed-methods empirical study;Empirical Software Engineering;2024-05-29

3. Analyzing the Evolution and Maintenance of ML Models on Hugging Face;Proceedings of the 21st International Conference on Mining Software Repositories;2024-04-15

4. Component-based Approach to Software Engineering of Machine Learning-enabled Systems;Proceedings of the IEEE/ACM 3rd International Conference on AI Engineering - Software Engineering for AI;2024-04-14

5. An empirical investigation of challenges of specifying training data and runtime monitors for critical software with machine learning and their relation to architectural decisions;Requirements Engineering;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3