1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
2. Non-motorised level of service: addressing challenges in pedestrian and bicycle level of service;Asadi-Shekari;Transp. Rev.,2013
3. Estimating level of service of mid-block bicycle lanes considering mixed traffic flow;Bai;Transport. Res. Part A: Policy Pract.,2017
4. Sensing comfort in bicycling in addition to travel data;Berger;Transport. Res. Proc.,2018
5. An analysis of bicycle travel speed and disturbances on off-street and on-street facilities;Bernardi;Transport. Res. Proc.,2015