1. Abramian, D., Eklund, A., 2019. Generating fMRI volumes from T1-weighted volumes using 3D CycleGAN, arXiv https://arxiv.org/abs/1907.08533.
2. Aderghal, K., Khvostikov, A., Krylov, A., Benois-Pineau, J., Afdel, K., Catheline, G., 2018. Classification of Alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning. In: Proceedings of the IEEE Symposium on Computer-Based Medical Systems, volume 2018-June, Institute of Electrical and Electronics Engineers Inc., pp. 345–350.
3. Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD;Anderson;NeuroImage,2014
4. Arjovsky, M., Chintala, S., Bottou, L., 2022. Wasserstein Generative Adversarial Networks. In: Proceedings of the 34th International Conference on Machine Learning, pp. 214–223.
5. Arora, S., Zhang, Y., 2017. Do GANs actually learn the distribution? An empirical study, arXiv https://arxiv.org/abs/1706.08224.