Boosting 3D point-based object detection by reducing information loss caused by discontinuous receptive fields
-
Published:2024-08
Issue:
Volume:132
Page:104049
-
ISSN:1569-8432
-
Container-title:International Journal of Applied Earth Observation and Geoinformation
-
language:en
-
Short-container-title:International Journal of Applied Earth Observation and Geoinformation
Author:
Liang AoORCID, Hua Haiyang, Fang Jian, Zhao Huaici, Liu Tianci
Reference42 articles.
1. Bai, X., Hu, Z., Zhu, X., Huang, Q., Chen, Y., Fu, H., Tai, C.-L., 2022. Transfusion: Robust lidar-camera fusion for 3d object detection with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1090–1099. 2. Chen, C., Chen, Z., Zhang, J., Tao, D., 2022. Sasa: Semantics-augmented set abstraction for point-based 3d object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, No. 1. pp. 221–229. 3. Chen, Y., Liu, S., Shen, X., Jia, J., 2019. Fast point r-cnn. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9775–9784. 4. Du, L., Ye, X., Tan, X., Feng, J., Xu, Z., Ding, E., Wen, S., 2020. Associate-3Ddet: Perceptual-to-conceptual association for 3D point cloud object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13329–13338. 5. Are we ready for autonomous driving? the kitti vision benchmark suite;Geiger,2012
|
|