Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations
Author:
Funder
National Research Foundation (NRF), Korea
Korean government
Publisher
Elsevier BV
Subject
Artificial Intelligence,Cognitive Neuroscience
Reference68 articles.
1. Intelligent computational model for classification of sub-Golgi protein using oversampling and fisher feature selection methods;Ahmad;Artificial Intelligence in Medicine,2017
2. IMethyl-STTNC: Identification of N6-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences;Akbar;Journal of Theoretical Biology,2018
3. IRNA-PseTNC: identification of RNA 5-methylcytosine sites using hybrid vector space of pseudo nucleotide composition;Akbar;Frontiers of Computer Science,2020
4. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning;Alipanahi;Nature biotechnology,2015
5. The RNA modification database, RNAMDB: 2011 update;Cantara;Nucleic Acids Research,2011
Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Discovering Consensus Regions for Interpretable Identification of RNA N6-Methyladenosine Modification Sites via Graph Contrastive Clustering;IEEE Journal of Biomedical and Health Informatics;2024-04
2. MSCAN: multi-scale self- and cross-attention network for RNA methylation site prediction;BMC Bioinformatics;2024-01-17
3. Prediction of m6A Methylation Sites in Mammalian Tissues Based on a Double-layer BiGRU Network*;PROG BIOCHEM BIOPHYS;2023
4. TransRNAm: Identifying Twelve Types of RNA Modifications by an Interpretable Multi-Label Deep Learning Model Based on Transformer;IEEE/ACM Transactions on Computational Biology and Bioinformatics;2023-11
5. AIPs-SnTCN: Predicting Anti-Inflammatory Peptides Using fastText and Transformer Encoder-Based Hybrid Word Embedding with Self-Normalized Temporal Convolutional Networks;Journal of Chemical Information and Modeling;2023-10-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3