Modified metaheuristics with stacked sparse denoising autoencoder model for cervical cancer classification
Author:
Funder
Ministry of Education and Science of the Russian Federation
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,General Computer Science,Control and Systems Engineering
Reference24 articles.
1. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images;William;Comput Methods Programs Biomed,2018
2. A comprehensive study on the multi-class cervical cancer diagnostic prediction on pap smear images using a fusion-based decision from ensemble deep convolutional neural network;Hussain;Tissue Cell,2020
3. A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images;William;Biomed Eng Online,2019
4. A review of applications of image analysis and machine learning techniques in automated diagnosis and classification of cervical cancer from pap-smear images;William,2018
5. Texture-based feature extraction of smear images for the detection of cervical cancer;Arya;IET Comput Vis,2018
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dense residual network for image edge detection;Multimedia Tools and Applications;2024-04-23
2. Prediction of Cervical Cancer Patients’ Survival Period with Machine Learning Techniques;Healthcare Informatics Research;2024-01-31
3. CerCan·Net: Cervical cancer classification model via multi-layer feature ensembles of lightweight CNNs and transfer learning;Expert Systems with Applications;2023-11
4. Multi-stage Attention-Based Long Short-Term Memory Networks for Cervical Cancer Segmentation and Severity Classification;Iranian Journal of Science and Technology, Transactions of Electrical Engineering;2023-10-27
5. Federated auto-encoder and XGBoost schemes for multi-omics cancer detection in distributed fog computing paradigm;Chemometrics and Intelligent Laboratory Systems;2023-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3