A deep feature learning method for remaining useful life prediction of drilling pumps

Author:

Guo JunyuORCID,Wan Jia-Lun,Yang Yan,Dai Le,Tang Aimin,Huang Bangkui,Zhang Fangfang,Li HeORCID

Publisher

Elsevier BV

Subject

General Energy,Pollution,Mechanical Engineering,Building and Construction,Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Civil and Structural Engineering

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid reliability assessment method based on health index construction and reliability modeling for rolling bearing;Quality and Reliability Engineering International;2024-08-04

2. A novel method for fault diagnosis of fluid end of drilling pump under complex working conditions;Reliability Engineering & System Safety;2024-08

3. Weld-Quality Diagnosis of In-Service Natural Gas Pipelines Based on a Fusion Model;Journal of Pipeline Systems Engineering and Practice;2024-08

4. Flight conflict detection of large fixed-wing UAV in joint airspace;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2024-07-25

5. A parallel deep neural network for intelligent fault diagnosis of drilling pumps;Engineering Applications of Artificial Intelligence;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3