Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors

Author:

Fan Xudong,Wang Xiaowei,Zhang Xijin,ASCE Xiong (Bill) Yu P.E.F.

Funder

National Science Foundation

Publisher

Elsevier BV

Subject

Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality

Reference74 articles.

1. Folkman, S., Water main break rates in the USA and Canada: a comprehensive study. 2018.

2. Najjaran, H., R. Sadiq, and B. Rajani, Modeling pipe deterioration using soil properties-an application of fuzzy logic expert system, in Pipeline Engineering and Construction: what's on the Horizon? 2004. p. 1–10.

3. Dawn of the replacement era: reinvesting in drinking water infrastructure: an analysis of twenty utilities' needs for repair and replacement of drinking water infrastructure;Association,2001

4. Residual lifetime assessment of cold-reheater pipe in coal-fired power plant through accelerated degradation test;Kim;Reliab Eng Syst Saf,2019

5. Time-dependent finite element reliability assessment of cast-iron water pipes subjected to spatio-temporal correlated corrosion process;Aryai;Reliab Eng Syst Saf,2020

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An interpretable machine learning-based pitting corrosion depth prediction model for steel drinking water pipelines;Process Safety and Environmental Protection;2024-10

2. A hybrid machine learning-based model for predicting failure of water mains under climatic variations: A Hong Kong case study;Tunnelling and Underground Space Technology;2024-10

3. Residual stress prediction in laser shock peening induced LD-TC4 alloy by data-driven ensemble learning methods;Optics & Laser Technology;2024-09

4. Hybrid knowledge and data driven approach for prioritizing sewer sediment cleaning;Automation in Construction;2024-09

5. Developing an Open Repository of Water Main Break Prediction Models in Kitchener;The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024);2024-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3