Uncertainty quantification of a deep learning model for failure rate prediction of water distribution networks
Author:
Funder
National Science Foundation
Publisher
Elsevier BV
Subject
Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality
Reference67 articles.
1. A hierarchical Bayesian approach for assessing infrastructure networks serviceability under uncertainty: a case study of water distribution systems;Yu;Reliab Eng Syst Saf,2021
2. SmartPipes: smart wireless sensor networks for leak detection in water pipelines;Sadeghioon;J Sens Actuator Netw,2014
3. Prediction models for annual break rates of water mains;Wang;J Perform Constr Facil,2009
4. ASCE. A comprehensive assessment of america's infrastructure, www.infrastructurereportcard.org. 2021. [accessed 1 January 2023].
5. A comprehensive framework to efficiently plan short and long-term investments in water supply and sewer networks;Ramos-Salgado;Reliab Eng Syst Saf,2022
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Estimating the all-terminal signatures for networks by using deep neural network;Reliability Engineering & System Safety;2025-01
2. Optimization of isolation valve placement to improve reliability and resilience of water distribution systems;Reliability Engineering & System Safety;2024-12
3. Uncertainty-aware deep learning for monitoring and fault diagnosis from synthetic data;Reliability Engineering & System Safety;2024-11
4. An interpretable machine learning-based pitting corrosion depth prediction model for steel drinking water pipelines;Process Safety and Environmental Protection;2024-10
5. A hybrid machine learning-based model for predicting failure of water mains under climatic variations: A Hong Kong case study;Tunnelling and Underground Space Technology;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3