Exploring Dataset Manipulation via Machine Learning for Botnet Traffic

Author:

Abrantes Rodrigo,Mestre Pedro,Cunha António

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Elsevier BV

Subject

General Engineering

Reference30 articles.

1. Review of intrusion detection systems based on deep learning techniques: coherent taxonomy, challenges, motivations, recommendations, substantial analysis and future directions;Aleesa,2019

2. New facets of mobile botnet: architecture and evaluation;Anagnostopoulos;International Journal of Information Security,2016

3. Beigi, E. B., Jazi, H. H., Stakhanova, N., and Ghorbani, A. A. (2014). Towards e ective feature selection in machine learning-based botnet detection approaches. 2014 IEEE Conference on Communications and Network Security, CNS 2014, pages 247 255.

4. LUCID: A Practical, Lightweight Deep Learning Solution for DDoS Attack Detection;Doriguzzi-Corin;IEEE Transactions on Network and Service Management,2020

5. Draper-Gil, G., Lashkari, A. H., Mamun, M. S. I., and Ghorbani, A. A. (2016). Characterisation of encrypted and VPN traffic using time-related features. ICISSP 2016 - Proceedings of the 2nd International Conference on Information Systems Security and Privacy, (Icissp):407 414.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. B-CAT: a model for detecting botnet attacks using deep attack behavior analysis on network traffic flows;Journal of Big Data;2024-04-10

2. Botnet sequential activity detection with hybrid analysis;Egyptian Informatics Journal;2024-03

3. Detecting Botnet Spam Activity by Analyzing Network Traffic Using Two-Stack Decision Tree Algorithms;2023 International Conference of Computer Science and Information Technology (ICOSNIKOM);2023-11-10

4. A Survey on Botnets Attack Detection Utilizing Machine and Deep Learning Models;Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering;2023-06-14

5. Botnet Dataset Overview Using Statistical Approach Based on Time Gap Activity Analysis;2023 11th International Symposium on Digital Forensics and Security (ISDFS);2023-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3