1. P. Aczel, The type theoretic interpretation of constructive set theory, in: A. Macintyre, L. Pacholski, J. Paris, (Eds.), Logic Colloquium’77, North-Holland, Amsterdam, 1978, pp. 55–66.
2. Binary refinement implies discrete exponentiation;Aczel;Studia Logica,2006
3. P. Aczel, M. Rathjen, Notes on Constructive Set Theory, Institut Mittag–Leffler Preprint no. 40, 2000/2001.
4. A. Bauer, Realizability as connection between constructive and computable mathematics, in: T. Grubba, P. Hertling, H. Tsuiki, K. Weihrauch (Eds.), CCA 2005, Second International Conference on Computability and Complexity in Analysis. Kyoto, Japan, August 2005, Fernuniversität Hagen, Informatik-Berichte, vols. 326–327, 2005, pp. 378–379.
5. A. Bauer, P. Taylor, The Dedekind reals in abstract Stone duality, in: T. Grubba, P. Hertling, H. Tsuiki, K. Weihrauch (Eds.), CCA 2005, Second International Conference on Computability and Complexity in Analysis. Kyoto, Japan, August 2005, Fernuniversität Hagen, Informatik-Berichte, vols. 326–327, 2005, pp. 25–64.