1. Chen, T., & Wong, R.C. (2020). Handling information loss of graph neural networks for session-based recommendation. In R. Gupta, Y. Liu, J. Tang, & B.A. Prakash (Eds.), KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23–27, 2020 (pp. 1172–1180). ACM. DOI: 10.1145/3394486.3403170.
2. Chen, W., Cai, F., Chen, H., & de Rijke, M. (2019). Joint neural collaborative filtering for recommender systems. ACM Trans. Inf. Syst., 37, 39:1–39:30. https://doi.org/10.1145/3343117.
3. Feng, Y., You, H., Zhang, Z., Ji, R., & Gao, Y. (2018). Hypergraph neural networks. CoRR, abs/1809.09401. http://arxiv.org/abs/1809.09401.
4. ACM Proceedings of the 26th International Conference on World Wide Web, WWW 2017;He,2017
5. Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2016). Session-based recommendations with recurrent neural networks. In Y. Bengio, & Y. LeCun (Eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016, Conference Track Proceedings. http://arxiv.org/abs/1511.06939.