1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. URL http://tensorflow.org/.
2. Technologies for truck classification and methodologies for estimating truck vehicle miles traveled;Benekohal;Transp. Res. Record: J. Transport. Res. Board,2003
3. Learning long-term dependencies with gradient descent is difficult;Bengio;IEEE Trans. Neural Networks,1994
4. Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification;Bolbol;Comput. Environ. Urban Syst.,2012
5. Bottou, L., Curtis, F.E., Nocedal, J., 2016. Optimization methods for large-scale machine learning. http://arxiv.org/abs/1606.04838.