Support vector machine classifier for diagnosis in electrical machines: Application to broken bar
Author:
Publisher
Elsevier BV
Subject
Artificial Intelligence,Computer Science Applications,General Engineering
Reference33 articles.
1. Multiple discriminate analysis and neural network based monolith and partition fault detection schemes for broken rotor bar in induction motor;Ayhan;IEEE Transactions on Industrial Electronics,2006
2. SVM practical industrial application for mechanical faults diagnostic;Baccarini;Journal of Expert Systems with Applications,2011
3. Quantitative evaluation of induction motor broken bars by means of electrical signature analysis;Bellini;IEEE Transactions on Industry Applications,2001
4. Advances in diagnostic techniques for induction machines;Bellini;IEEE Transactions on Industrial Electronics,2008
5. A review of induction motors signature analysis as a medium for faults detection;Benbouzid;IEEE Transactions on Industrial Electronics,2000
Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Diagnosing Faults in Electrical Machines Using VMD: The Effect of the Sampling Frequancy;2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC);2024-05-12
2. Induction motor failures detection using Motor Current Signal Analysis (MCSA) and two-step Support Vector Machine (SVM) classifier;PRZEGLĄD ELEKTROTECHNICZNY;2024-02-19
3. The Effects of Bearing Lubrication on Vibration, Acoustic and Stray Flux Signals in Induction Motors;2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED);2023-08-28
4. Implementation of Vibrations Faults Monitoring and Detection on Gas Turbine System Based on the Support Vector Machine Approach;Journal of Vibration Engineering & Technologies;2023-06-04
5. Dynamic Eccentricity Faut Diagnosis for Inverter-Fed Induction Motor Using Stator Current Temporal Envelope Estimation;2022 2nd International Conference on Advanced Electrical Engineering (ICAEE);2022-10-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3