1. Arthur, D., Arthur, D., Vassilvitskii, S., & Vassilvitskii, S. (2007). k-Means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms (Vol. 8, pp. 1027–1035). Doi:http://dx.doi.org/10.1145/1283383.1283494.
2. Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. University of California Irvine School of Information.
3. A comparative study of efficient initialization methods for the k-means clustering algorithm;Celebi;Expert Systems with Applications,2013
4. Data analysis with fuzzy clustering methods;Doring;Computational Statistics & Data Analysis,2006
5. Fukuyama, Y., & Sugeno, M. (1989). A new method of choosing the number of clusters for the fuzzy c- means method, Proc. 5th Fuzzy Syst. Symp., pp. 247–250.