1. Abe, S., & Inoue, T. (2002). Fuzzy support vector machines for multiclass problems. ESANN’ 2002. In Proceedings (European symposium on artificial neural networks) Bruges (Belgium), 24–26 April. (pp. 113–118): d-side public, ISBN 2-930307-02-1.
2. Probabilistic SVM outputs for pattern recognition using analytical geometry;Ana;Neurocomputing,2004
3. Bonneville, M., Meunier, J., Bengio, Y.,& Soucy, J. P. (1998). Support vector machines for improving the classification of brain PET images. In Proceedings of the SPIE medical imaging symposium (Vol. 3338, pp. 264–273). San Diego, CA.
4. The local paradigm for modeling and control: From neuro-fuzzy to lazy learning;Bontempi,2001
5. Bontempi, G., Birattari, M., & Bersini, H. (1998). Recursive lazy learning for modeling and control. In Machine learning: ECML-98 (10th European conference on machine learning) (pp. 292–303). April 21–23, 1998, Chemnitz, Germany.