Author:
Dawood Thikra,Elwakil Emad,Mayol Novoa Hector,Fernando Gárate Delgado José
Subject
General Engineering,General Materials Science
Reference44 articles.
1. ASCE 2017. Infrastructure Report Card. https://www.infrastructurereportcard.org/cat-.
2. Snider, B., and McBean, E. A. 2020. Improving Urban Water Security through Pipe-Break Prediction Models: Machine Learning or Survival Analysis. Journal of Environmental Engineering, 146(3): 04019129.
3. Folkman, S. 2018. Water main break rates in the USA and Canada: a comprehensive study. https://digitalcommons.usu.edu/mae_facpub/174/.item/drinking_water/.
4. Predicting the timing of water main failure using artificial neural networks;Harvey;J. Water Resour. Plann. Manage.,2014
5. Buried No Longer: Confronting America’s Water Infrastructure Challenge.http://www.urbanwaterslearningnetwork.org/resources/awwa-confronting-americas-water-infrastructure-challenge2017/;AWWA,2012
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献