Predicting the effects of selected reservoir petrophysical properties on bottomhole pressure via three computational intelligence techniques
Author:
Publisher
Elsevier BV
Subject
Geochemistry and Petrology,Geology,Energy Engineering and Power Technology
Reference41 articles.
1. Machine learning models to predict bottom hole pressure in multi-phase flow in vertical oil production wells;Ahmadi;Can. J. Chem. Eng.,2019
2. Pressure Dependent Permeability of Tight Rocks;Akai,2016
3. Bottom-hole pressure estimation from wellhead data using artificial neural network;Akinsete,2019
4. Bottom hole pressure estimation using hybridization neural networks and grey wolves optimization;Amar;Petroleum,2018
5. Applying hybrid support vector regression and genetic algorithm to water alternating CO2 gas EOR;Amar;Greenhouse Gases: Sci. Technol.,2020
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Interporosity Flow Between Matrix and Fractures in Carbonates: A Study of its Impact on Oil Production;Arabian Journal for Science and Engineering;2024-09-02
2. Production Optimization in Oil and Gas Wells: A Gated Recurrent Unit Approach to Bottom Hole Flowing Pressure Prediction;SPE Nigeria Annual International Conference and Exhibition;2024-08-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3