Explainable, trustworthy, and ethical machine learning for healthcare: A survey
Author:
Funder
Qatar National Research Fund
Qatar National Library
Qatar Foundation
Publisher
Elsevier BV
Subject
Health Informatics,Computer Science Applications
Reference189 articles.
1. A survey on deep learning in medical image analysis;Litjens;Med. Image Anal.,2017
2. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review;Xiao;J. Am. Med. Inform. Assoc.,2018
3. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR;Trebeschi;Sci. Rep.,2017
4. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study;Betancur;JACC: Cardiovasc. Imaging,2018
5. Deep learning in medical imaging: general overview;Lee;Korean J. Radiol.,2017
Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Privacy preservation in Artificial Intelligence and Extended Reality (AI-XR) metaverses: A survey;Journal of Network and Computer Applications;2024-11
2. Explainable AI-driven IoMT fusion: Unravelling techniques, opportunities, and challenges with Explainable AI in healthcare;Information Fusion;2024-10
3. Prediction of neurologic outcome after out-of-hospital cardiac arrest: An interpretable approach with machine learning;Resuscitation;2024-09
4. Comprehensive review of deep learning in orthopaedics: Applications, challenges, trustworthiness, and fusion;Artificial Intelligence in Medicine;2024-09
5. Multi-region models built with machine and deep learning for predicting several heat-related health outcomes;Sustainable Cities and Society;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3