Subject
Computational Mathematics,Computational Theory and Mathematics,Modeling and Simulation
Reference39 articles.
1. Energy-preserving methods for nonlinear Schrödinger equations;Besse;IMA J. Numer. Anal.,2020
2. Hamiltonian boundary value methods (energy preserving discrete line integral methods);Brugnano;J. Numer. Anal. Ind. Appl. Math.,2010
3. Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs;Cai;J. Comput. Phys.,2019
4. Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs;Cai;J. Comput. Phys.,2020
5. Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system;Cai;J. Comput. Phys.,2013