Arrhythmia classification based on improved monarch butterfly optimization algorithm
Author:
Publisher
Elsevier BV
Subject
General Computer Science
Reference43 articles.
1. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network;Acharya;Inform. Sci.,2017
2. Acharya, U. Rajendra, et al. A deep convolutional neural network model to classify heartbeats. Computers in biology and medicine 89 (2017): 389–396.
3. Detection of life-threatening arrhythmias using feature selection and support vector machines;Alonso-Atienza;IEEE Trans. Biomed. Eng.,2013
4. Classification of myocardial infarction with multi-lead ECG signals and deep CNN;Baloglu;Pattern Recogn. Lett.,2019
5. Cardiovascular diseases (CVDs), https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), May 17, 2017.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Monarch butterfly optimization-based genetic algorithm operators for nonlinear constrained optimization and design of engineering problems;Journal of Computational Design and Engineering;2024-05-01
2. Arrhythmia detection by the graph convolution network and a proposed structure for communication between cardiac leads;BMC Medical Research Methodology;2024-04-27
3. Study of feature selection algorithms to improve arrhythmia detection performance on ECG signal;2023 3rd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA);2023-12-13
4. RL-ECGNet: resource-aware multi-class detection of arrhythmia through reinforcement learning;Applied Intelligence;2023-11-29
5. An improved cuckoo search algorithm with deep learning approach for classifying arrhythmia based on ECG signal;Internet Technology Letters;2023-09-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3