The behavior of noble-metal admixtures during fractional crystallization of As- and Co-containing Cu–Fe–Ni sulfide melts

Author:

Sinyakova E.F.1,Kosyakov V.I.2

Affiliation:

1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

2. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Lavrent’eva 3, Novosibirsk, 630090, Russia

Abstract

AbstractTo study the behavior of macrocomponents and admixtures during the fractional crystallization of sulfide melts and the influence of As on noble metals in this process, we performed a quasi-equilibrium directional crystallization of melt of composition (at.%): Fe—35.5, Ni—4.9, Cu—10.4, and S—48.3, with admixtures of Pt, Pd, Rh, Ru, Ir, Au, Ag, As, and Co (each 0.1 at.%), which imitates the average (by Cu contents) compositions of massive ores at the Noril’sk Cu-Ni deposits. The following sequence of phase formation from melt has been established: mss (zone I) / mss + iss (zone II) / iss (zone III) (mss is (FezNi1–z)S1+δ, iss is (FexCuyNi1–x–y)zS1–z); it corresponds to the distribution of main elements along the sample (primary zoning). Distribution curves for macrocomponents in zones I and II of the sample were constructed, as well as the dependencies of their partition coefficients (k) between solid solutions and sulfide melt on the fraction of crystallized melt. The secondary (mineral) zoning resulted from subsolidus phase transformations has been revealed. Five subzones have been recognized: mss + cp (Ia) / mss + cp + pn (Ib) / mss + pc + pn (IIa) / mss + pc + pn + bn (IIb) / pc + bn + pn + unidentified microphases (III). Admixture species in the sample were studied: (1) admixtures dissolved in primary solid solutions and in main minerals resulted from solid-phase transformations and (2) admixtures forming their own mineral phases. The partition coefficients of Co, Rh, and Ru (mss/L), Ru, Ir, and Rh (mss/cp), and Co, Rh, and Pd (mss/pn) were determined. Minerals of noble metals have been recognized: Pt3Fe, PtFe, Au, (Ag,Pd), (Au,Pt), Ag, Ag3Cu, Au3(Cu,Ag,Pd,Pt), etc., and the regularities of their distribution in the sample have been established. It is shown that some noble-metal admixtures are prone to interact with As. Mineral arsenides and sulfoarsenides of noble metals produced during fractional crystallization have been recognized: PtAs2, Pd3As, (RhAsS), (IrAsS), and (Ir,Rh)AsS. The discovered drop-like inclusions of noble-metal arsenides suggest the separation of the initial sulfide-arsenide melt into two immiscible liquids. By indirect features, the micromineral inclusions are divided into primary, crystallized from melt, and secondary, produced in solid-phase reactions. The results of study are compared with literature experimental data obtained by the isothermal-annealing method and with the behavior of noble metals and As during the formation of zonal massive orebodies at the Noril’sk- and Sudbury-type deposits.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3