1. Audebert, N., Saux, B.L., Lefèvre, S., 2016. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. In: Asian Conference on Computer Vision (ACCV), Taipei, Taiwan, pp. 180–196.
2. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation;Baatz;Angew geogr informationsverarbeitung,2000
3. Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561.
4. Bottou, L., 2010. Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT'2010. Springer, Physica-Verlag HD. p. 177–186.
5. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2016. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv preprint arXiv:1606.00915.