Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system
Author:
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Building and Construction,Civil and Structural Engineering
Reference13 articles.
1. A. Almalaq et G. Edwards, «Comparison of Recursive and Non-Recursive ANNs in Energy Consumption Forecasting in Buildings», in 2019 IEEE Green Technologies Conference(GreenTech), Lafayette, LA, USA, avr. 2019, p. 1‑5. 10.1109/GreenTech.2019.8767130.
2. Empirical mode decomposition based hybrid ensemble model for electrical energy consumption forecasting of the cement grinding process;Liu;Measurement,2019
3. Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy;Yan;Energies,2018
4. Short-term household load forecasting based on Long- and Short-term Time-series network;Guo;Energy Rep.,2021
5. Ensemble Prediction Approach Based on Learning to Statistical Model for Efficient Building Energy Consumption Management;Khan;Symmetry,2021
Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A hybrid Monte Carlo quantile EMD-LSTM method for satellite in-orbit temperature prediction and data uncertainty quantification;Expert Systems with Applications;2024-12
2. Multi-energy load forecasting for integrated energy system based on sequence decomposition fusion and factors correlation analysis;Energy;2024-11
3. Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code;Energy;2024-10
4. Minute-level ultra-short-term power load forecasting based on time series data features;Applied Energy;2024-10
5. Smart grid enterprise decision-making and economic benefit analysis based on LSTM-GAN and edge computing algorithm;Alexandria Engineering Journal;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3