Author:
Yang Daoguang,Karimi Hamid Reza,Ma Dayou
Reference11 articles.
1. Lapins, S., Butcher, A., Kendall, J., Hudson, T.S., Stork, A.L., Werner, M.J., Gunning, J., Brisbourne, A.M., et al. (2023). Das-n2n: Machine learning distributed acoustic sensing (das) signal denoising without clean data. arXiv preprint arXiv:2304.08120.
2. Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., and Aila, T. (2018). Noise2noise: Learning image restoration without clean data. arXiv preprint arXiv:1803.04189.
3. Ifd-mdcn: Multi-branch denoising convolutional networks with improved flow direction strategy for intelligent fault diagnosis of rolling bearings under noisy conditions;Li;Reliability Engineering & System Safety,2023
4. Particle filter-based damage prognosis using online feature fusion and selection;Li;Mechanical Systems and Signal Processing,2023
5. Highly accurate machine fault diagnosis using deep transfer learning;Shao;IEEE Transactions on Industrial Informatics,2018