A new code for Volterra integral equations based on natural Runge-Kutta methods
Author:
Publisher
Elsevier BV
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis
Reference31 articles.
1. The linear barycentric rational method for a class of delay Volterra integro-differential equations;Abdi;J. Sci. Comput.,2018
2. Towards a code for nonstiff differential systems based on general linear methods with inherent Runge-Kutta stability;Abdi;Appl. Numer. Math.,2019
3. Natural continuous extensions of Runge-Kutta methods for Volterra integral equations of the second kind and their applications;Bellen;Math. Comput.,1989
4. Stability analysis of Runge-Kutta methods for Volterra integral equations of the second kind;Bellen;IMA J. Numer. Anal.,1990
5. An analogue of the Runge-Kutta method for the solution of nonlinear integral equations of Volterra type;Bel'tyukov;Differ. Equ.,1965
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The linear barycentric rational backward differentiation formulae for stiff ODEs on nonuniform grids;Numerical Algorithms;2024-04-11
2. The barycentric rational predictor-corrector schemes for Volterra integral equations;Journal of Computational and Applied Mathematics;2024-04
3. Explicit methods based on barycentric rational interpolants for solving non-stiff Volterra integral equations;Applied Numerical Mathematics;2022-04
4. A GLMs-based difference-quadrature scheme for Volterra integro-differential equations;Applied Numerical Mathematics;2021-05
5. An interpolation-based method for solving Volterra integral equations;Journal of Applied Mathematics and Computing;2021-04-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3