1. L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, in: J. Nes̆etr̆il (Ed.), Topological, Algebraical and Combinatorial Structures. Folik's Memorial Volume, Discrete Math. 108 (1–3) (1992) 231–252.
2. The chromatic number of random graphs;Bollobás;Combinatorica,1988
3. A. Czygrinow, B. Nagle, Strong edge colorings of uniform graphs, manuscript, http://desdemona.la.asu.edu/~andrzej/papers/CZN04/czn04.pfd
4. Random Graphs, Series in Discrete Mathematics and Optimization;Janson,2000
5. J. Komlós, M. Simonovits, Szemerédi's Regularity Lemma and its applications in graph theory, in: D. Miklós, V.T. Sós, T. Szőnyi (Eds.), Combinatorics, Paul Erdős is Eighty, Bolyai Society Mathematical Studies, Vol. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 295–352.