Deep learning for 3D human pose estimation and mesh recovery: A survey
-
Published:2024-09
Issue:
Volume:596
Page:128049
-
ISSN:0925-2312
-
Container-title:Neurocomputing
-
language:en
-
Short-container-title:Neurocomputing
Author:
Liu Yang,
Qiu Changzhen,
Zhang ZhiyongORCID
Reference283 articles.
1. H. Duan, Y. Zhao, K. Chen, D. Lin, B. Dai, Revisiting skeleton-based action recognition, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2969–2978.
2. Voxeltrack: Multi-person 3d human pose estimation and tracking in the wild;Zhang;IEEE Trans. Pattern Anal. Mach. Intell.,2022
3. Multilevel spatial–temporal excited graph network for skeleton-based action recognition;Zhu;IEEE Trans. Image Process.,2022
4. Efficient data-driven behavior identification based on vision transformers for human activity understanding;Yang;Neurocomputing,2023
5. Y. You, H. Liu, T. Wang, W. Li, R. Ding, X. Li, Co-Evolution of Pose and Mesh for 3D Human Body Estimation from Video, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 14963–14973.