Holocene Climatic Variations—Their Pattern and Possible Cause

Author:

Denton George H.,Karlén Wibjörn

Abstract

AbstractIn the northeastern St. Elias Mountains in southern Yukon Territory and Alaska, C14-dated fluctuations of 14 glacier termini show two major intervals of Holocene glacier expansion, the older dating from 3300-2400 calendar yr BP and the younger corresponding to the Little Ice Age of the last several centuries. Both were about equivalent in magnitude. In addition, a less-extensive and short-lived advance occurred about 1250-1050 calendar yr BP (A.D. 700–900). Conversely, glacier recession, commonly accompanied by rise in altitude of spruce tree line, occurred 5975–6175, 4030-3300, 2400-1250, and 1050-460 calendar yr BP, and from A.D. 1920 to the present. Examination of worldwide Holocene glacier fluctuations reinforces this scheme and points to a third major interval of glacier advances about 5800-4900 calendar yrs BP; this interval generally was less intense than the two younger major intervals. Finally, detailed mapping and dating of Holocene moraines fronting 40 glaciers in the Kebnekaise and Sarek Mountains in Swedish Lapland reveals again that the Holocene was punctuated by repeated intervals of glacier expansion that correspond to those found in the St. Elias Mountains and elsewhere. The two youngest intervals, which occurred during the Little Ice Age and again about 2300–3000 calendar yrs BP, were approximately equal in intensity. Advances of the two older intervals, which occurred approximately 5000 and 8000 calendar yr BP, were generally less extensive. Minor glacier fluctuations were superimposed on all four broad expansion intervals; those of the Little Ice Age culminated about A.D. 1500–1640, 1710, 1780, 1850, 1890, and 1916. In the mountains of Swedish Lapland, Holocene mean summer temperature rarely, if ever, was lower than 1°C below the 1931–1960 summer mean and varied by less than 3.5°C over the last two broad intervals of Holocene glacial expansion and contraction.Viewed as a whole, therefore, the Holocene experienced alternating intervals of glacier expansion and contraction that probably were superimposed on the broad climatic trends recognized in pollen profiles and deep-sea cores. Expansion intervals lasted up to 900 yr and contraction intervals up to 1750 yr. Dates of glacial maxima indicate that the major Holocene intervals of expansion peaked at about 200–330, 2800, and 5300 calendar yr BP, suggesting a recurrence of major glacier activity about each 2500 yr. If projected further into the past, this Holocene pattern predicts that alternating glacier expansion-contraction intervals should have been superimposed on the Late-Wisconsin glaciation, with glacier readvances peaking about 7800, 10,300, 12,800, and 15,300 calendar yr BP. These major readvances should have been separated by intervals of general recession, some of which might have been punctuated by short-lived advances. Furthermore, the time scales of Holocene events and their Late-Wisconsin analogues should be comparable. Considering possible errors in C14 dating, this extended Holocene scheme agrees reasonably well with the chronology and magnitude of such Late-Wisconsin events as the Cochrane-Cockburn readvance (8000–8200 C14 yr BP), the Pre-Boreal interstadial, the Fennoscandian readvances during the Younger Dryas stadial (10,850-10,050 varve yr BP), the Alleröd interstadial (11,800-10,900 C14 yr BP), the Port Huron readvance (12,700–13,000 C14 yr BP), the Cary/Port Huron interstadial (centered about 13,300 C14 yr BP), and the Cary stadial (14,000–15,000 C14 yr BP). Moreover, comparison of presumed analogues such as the Little Ice Age and the Younger Dryas, or the Alleröd and the Roman Empire-Middle Ages warm interval, show marked similarities. These results suggest that a recurring pattern of minor climatic variations, with a dominant overprint of cold intervals peaking about each 2500 yr, was superimposed on long-term Holocene and Late-Wisconsin climatic trends. Should this pattern continue to repeat itself, the Little Ice Age will be succeeded within the next few centuries by a long interval of milder climates similar to those of the Roman Empire and Middle Ages.Short-term atmospheric C14 variations measured from tree rings correlate closely with Holocene glacier and tree-line fluctuations during the last 7000 yr. Such a correspondence, firstly, suggests that the record of short-term C14 variations may be an empirical indicator of paleoclimates and, secondly, points to a possible cause of Holocene climatic variations. The most prominent explanation of short-term C14 variations involves modulation of the galactic cosmic-ray flux by varying solar corpuscular activity. If this explanation proves valid and if the solar constant can be shown to vary with corpuscular output, it would suggest that Holocene glacier and climatic fluctuations, because of their close correlation with short-term C14 variations, were caused by varying solar activity. By extension, this would imply a similar cause for Late-Wisconsin climatic fluctuations such as the Alleröd and Younger Dryas.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Reference84 articles.

1. Glaciärenas liv.;Schytt;Svenska Turistforeningens Årsskrift 1963,1963

2. Glacier resurgence at the Atlantic/sub-Boreal transition

3. The three causes of secular C14 fluctuations, their amplitudes and time constants.;Suess;Radiocarbon Variations and Absolute Chronology,1970a

4. Post-Hypsithermal glacier advances at Mount Rainier, Washington.;Crandell;United States Geological Survey Professional Paper,1964

5. Pleistocene geology of the Snag-Klutlan area, southwestern Yukon Territory, Canada.;Rampton;Doctoral dissertation,1969

Cited by 769 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3