Late Wisconsin Ice-Surface Profile Calculated from Esker Paths and Types, Katahdin Esker System, Maine

Author:

Shreve Ronald L.

Abstract

Values of the gradient of the former ice surface can be inferred at points along a flow line from deviations of esker paths or transitions in esker type and numerically integrated to give the profile. A profile calculated in this way shows that during formation of the Katahdin esker system about 12,700 yr ago the ice thickness at distances of 10, 20, 50, 100, and 140 km from the terminus, which is about two thirds of the distance to the ice divide, was approximately 200, 300, 600, 750, and 900 m. The terminal reach was computed by assuming an unknown uniform basal drag and matching the profile to its known elevation at the terminus and known gradient 10 km upglacier. Correction for isostatic rebound based on the elevations of contemporaneous deltas and of the marine limit proved unnecessary, because the tilt due to the difference in uplift at the two ends of the profile is only 0.1 m km−1. With other plausible assumptions as to sea levels in the past, elevations of the marine limit, or exact location of the terminus the profile could be as much as roughly 100 m higher. It hits Mount Katahdin about 500 m below its summit, which is at 1600 m, in agreement with the geological evidence farther west. The steepening of the upper part of the profile suggests that the mountain dammed and diverted the ice. Basal drag computed from the profile varies from about 20 kPa (0.2 bar) near the terminus to 30 kPa (0.3 bar) at 100 km to 70 kPa (0.7 bar) at 140 km. The relatively low values away from the influence of Mount Katahdin agree with independent evidence from deep-sea cores of substantial late Wisconsin ice-sheet thinning without comparable areal reduction. The method has potential for application over wide areas that were occupied by the Laurentide and Scandinavian ice sheets.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3