Reconstruction of Annual Temperature (1590–1979) for Longmire, Washington, Derived from Tree Rings

Author:

Graumlich Lisa J.,Brubaker Linda B.

Abstract

Annual growth records from trees at timberline in the Cascade Range of Washington are correlated with variations in temperature and snow depth and used to reconstruct climatic variation in the past. Response surfaces indicate that growth of mountain hemlock (Tsuga mertensiana) and subalpine larch (Larix lyallii) is positively correlated with summer (July to September) temperature and negatively correlated with spring (March) snow depth when snow depth is at or below average. During years of above average snow depth, temperature has little effect on mountain hemlock but has a negative effect on growth in subalpine larch. These interactions make it difficult to reconstruct these climatic variables separately using standard methods. Mean annual temperature values, which combine information on both summer temperature and spring snow depth, were estimated from a regression model that reconstructs past temperature at Longmire, Washington, as a function of larch and hemlock tree-ring chronologies. The reconstruction of mean annual temperature shows temperatures between 1590 and 1900 to be approximately 1°C lower than those of the 20th century. Only during a short period from 1650 to 1690 did temperatures approach 20th-century values.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3