Video process detection for space electrostatic suspension material experiment in China’s Space Station
-
Published:2024-05
Issue:
Volume:131
Page:107804
-
ISSN:0952-1976
-
Container-title:Engineering Applications of Artificial Intelligence
-
language:en
-
Short-container-title:Engineering Applications of Artificial Intelligence
Author:
Yang JianORCID, Liu Kang, Zhao ManqiORCID, Li Shengyang
Reference32 articles.
1. Bai, Y., Wang, Y., Tong, Y., Yang, Y., Liu, Q., Liu, J., 2020. Boundary Content Graph Neural Network for Temporal Action Proposal Generation. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition. pp. 121–137. 2. Bertasius, G., Wang, H., Torresani, L., 2021. Is Space-Time Attention All You Need for Video Understanding?. In: Proceedings of International Conference on Machine Learning. p. 4. 3. Bodla, N., Singh, B., Chellappa, R., Davis, L.S., 2017. Soft-NMS–Improving Object Detection With One Line of Code. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 5561–5569. 4. Buch, S., Escorcia, V., Ghanem, B., Niebles, J.C., 2017a. End-to-End, Single-Stream Temporal Action Detection in Untrimmed Videos. In: Proceedings of the British Machine Vision Conference. pp. 93.1–93.12. 5. Buch, S., Escorcia, V., Shen, C., Ghanem, B., Niebles, J.C., 2017b. SST: Single-Stream Temporal Action Proposals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2911–2920.
|
|