1. Aslan, B., Platt, D., Sheard, D., 2023. Group invariant machine learning by fundamental domain projections, in: Sanborn, S., Shewmake, C., Azeglio, S., Di Bernardo, A., Miolane, N. (Eds.), Proceedings of the 1st NeurIPS Workshop on Symmetry and Geometry in Neural Representations, pp. 181–218. URL: https://proceedings.mlr.press/v197/aslan23a.html.
2. Berglund, P., Campbell, B., Jejjala, V., 2021. Machine Learning Kreuzer–Skarke Calabi–Yau Threefolds. arXiv URL: https://arxiv.org/abs/2112.09117.
3. Berglund, P., He, Y.H., Heyes, E., Hirst, E., Jejjala, V., Lukas, A., 2024. New Calabi–Yau manifolds from genetic algorithms. Physics Letters B 850, 138504. doi:10.1016/j.physletb.2024.138504.
4. Berman, D.S., He, Y.H., Hirst, E., 2022. Machine learning Calabi-Yau hypersurfaces. Physical Review D 105, 066002. doi:10.1103/PhysRevD.105.066002.
5. Bull, K., He, Y.H., Jejjala, V., Mishra, C., 2018. Machine learning CICY threefolds. Physics Letters B 785, 65–72. doi:10.1016/j.physletb.2018.08.008.