Activation energy and binary chemical reaction effects in mixed convective nanofluid flow with convective boundary conditions

Author:

Dhlamini Mlamuli1,Kameswaran Peri K.2,Sibanda Precious1,Motsa Sandile13,Mondal Hiranmoy1

Affiliation:

1. School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01, Scottsvile, Pietermaritzburg 3209, South Africa

2. Department of Mathematics, School of Advanced Sciences, VIT University, Vellore 632014, India

3. Department of Mathematics, University of Swaziland, Private Bag 4, Kwaluseni, Swaziland

Abstract

Abstract In this paper, we present a theoretical study of the combined effects of activation energy and binary chemical reaction in an unsteady mixed convective flow over a boundary of infinite length. The current study incorporates the influence of the Brownian motion, thermophoresis and viscous dissipation on the velocity of the fluid, temperature of the fluid and concentration of chemical species. The equations are solved numerically to a high degree of accuracy using the spectral quasilinearization method. Brownian motion was noted as the main process by which the mass is transported out of the boundary layer. The effect of thermophoretic parameter seems to be contrary to the expected norm. We expect the thermophoretic force to ‘push’ the mass away from the surface thereby reducing the concentration in the boundary layer, however, concentration of chemical species is seen to increase in the boundary layer with an increase in the thermophoretic parameter. The use of a heated plate of infinite length increased the concentration of chemical species in the boundary layer. The Biot number which increases and exceeds a value of one for large heated solids immersed in fluids increases the concentration of chemical species for its increasing values. Highlights Combined effects of activation energy and binary chemical reaction are proposed. Spectral quasi-linearization method (SQLM) is used for computer simulations. Use Arrhenius activation energy in the chemical species concentration. Validate the accuracy and convergence using residual error analysis.

Funder

Claude Leon Foundation Postdoctoral Fellowship

University of KwaZulu-Natal, South Africa

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3