A multi-objective optimization for brush monofilament tufting process design

Author:

Salmasnia Ali1,Hasannejad Saeed2,Mokhtari Hadi3

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering and Technology, University of Qom, Qom, Iran

2. Department of Industrial Engineering, Faculty of Engineering, Eyvanekey University, Eyvanekey, Iran

3. Department of Industrial Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran

Abstract

Abstract This paper addresses the optimization of monofilament tufting process as the most important and the main stage of toothbrush production in sanitary industries. In order to minimize both process time and depreciation costs, and ultimately increase the production efficiency in such an industrial unit, we propose a metaheuristic based optimization approach to solve it. The Traveling Salesman Problem (TSP) is used to formulate the proposed problem. Then by using multi-objective evolutionary algorithms, NSGA-II and MOPSO, we seek to obtain the best solution and objective functions described above. Extensive computational experiments on three different kinds of toothbrush handles are performed and the results demonstrate the applicability and appropriate performance of algorithms. The comparison metrics like spacing, number of Pareto solutions, time, mean distance from the ideal solution and diversity are used to evaluate the quality of solutions. Moreover a sensitivity analysis is done for investigation of the performance in various setting of parameters. Key points Brush monofilament tufting process design. NSGA-II and MOPSO as multi-objective approaches. Extensive computational experiments. Comparison metrics like spacing, number of Pareto solutions, time, mean distance from ideal solution and diversity.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference35 articles.

1. Application of the NSGA-II algorithm to a multi-period inventory-redundancy allocation problem in a series-parallel system;Alikar;Reliability Engineering and System Safety 160,2017

2. Optimizing drilling conditions in printed circuit board by considering hole quality optimization from viewpoint of drill-movement time;Aoyama;Journal of Materials Processing Technology,2004

3. Bi-criteria flexible job-shop scheduling with sequence-dependent setup times—variable neighborhood search approach;Bagheri;International Journal of Manufacturing Systems,2011

4. Toolpath optimization for minimizing airtime during machining;Castelino;Journal of Manufacturing Systems,2002

5. Adaptive multi-objective genetic algorithms for scheduling of drilling operation in printed circuit board industry;Changa;Applied Soft Computing,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3