Author:
Charina Maria,Stöckler Joachim
Reference26 articles.
1. A characterization of affine dual frames in L2(Rn);Bownik;Appl. Comput. Harmon. Anal.,2000
2. M. Charina, J. Stöckler, Tight wavelet frames for subdivision, Report #338, Fachbereich Mathematik, Universität Dortmund, 2006
3. Compactly supported tight frames associated with refinable functions;Chui;Appl. Comput. Harmon. Anal.,2000
4. Construction of multivariate tight frames via Kronecker products;Chui;Appl. Comput. Harmon. Anal.,2001
5. Compactly supported tight and sibling frames with maximum vanishing moments;Chui;Appl. Comput. Harmon. Anal.,2002
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Generalized matrix spectral factorization with symmetry and applications to symmetric quasi-tight framelets;Applied and Computational Harmonic Analysis;2023-07
2. A structural characterization of compactly supported OEP-based balanced dual multiframelets;Analysis and Applications;2023-06-09
3. Quasi-tight framelets with high vanishing moments derived from arbitrary refinable functions;Applied and Computational Harmonic Analysis;2020-07
4. Semi-regular Dubuc–Deslauriers wavelet tight frames;Journal of Computational and Applied Mathematics;2019-03
5. On lazy Faber’s type decomposition for linear splines;APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19;2019