1. G.E.A.P.A. Batista, X. Wang, E.J. Keogh, A complexity-invariant distance measure for time series, in: Proceedings of the 2011 SIAM International Conference on Data Mining (SDM’11), Arizona, USA, 2011, pp. 699–710.
2. J.R. Chen, Making subsequence time series clustering meaningful, in: Proceedings of the 5th IEEE International Conference on Data Mining (ICDM’05). Texas, USA, 2005, pp. 114–121.
3. P. Cotofrei, K. Stoffel, Classification rules + time=temporal rules, in: Proceedings of 2002 International Conference on Computational Science, Amsterdam, Netherlands, 2002, pp. 572–581.
4. G. Das, K. Lin, H. Mannila, G. Renganathan, P. Smyth. Rule discovery from time series, in: 4th International Conference on Knowledge Discovery and Data Mining (KDD’98). New York, USA, 1998, pp. 16–22.
5. A class of hybrid morphological perceptrons with application in time series forecasting;Araújo;Knowledge-Based Systems,2011