1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. https://www.tensorflow.org/.
2. Progress in dynamic simulation of thermal power plants;Alobaid;Prog. Energy Combust. Sci.,2017
3. Fundamentals of Heat and Mass Transfer;Bergman,2011
4. Dynamic optimization of a district energy system with storage using a novel mixed-integer quadratic programming algorithm;Blackburn;Optim. Eng.,2019
5. Blackburn, L. D., 2022. Dynamic power plant optimization (public). https://bitbucket.org/nednal/dynamic-power-plant-optimization-public/src/master/.