1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org, https://www.tensorflow.org/.
2. Pharmacokinetics of drugs following IV bolus, IV infusion, and oral administration;Ahmed,2015
3. CasADi – a software framework for nonlinear optimization and optimal control;Andersson;Math. Program. Comput.,2019
4. Beckley, R., Weatherspoon, C., Alexander, M., Chandler, M., Johnson, A., Bhatt, G. S., 2013. Modeling epidemics with differential equations. Accessed: 08.07.2021.
5. Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models;Bikmukhametov;Comput. Chem. Eng.,2020