Adaptation of Pseudomonas aeruginosa biofilms to tobramycin and the quorum sensing inhibitor C-30 during experimental evolution requires multiple genotypic and phenotypic changes

Author:

Bové Mona1,Kolpen Mette2,Lichtenberg Mads3,Bjarnsholt Thomas3,Coenye Tom13ORCID

Affiliation:

1. Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium

2. Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen N, Denmark

3. Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark

Abstract

In the present study we evaluated the fitness, antimicrobial susceptibility, metabolic activity, gene expression, in vitro production of virulence factors and in vivo virulence of experimentally evolved Pseudomonas aeruginosa PAO1. These strains were previously evolved in the presence of tobramycin and the quorum sensing inhibitor furanone C-30 (C-30) and carried mutations in mexT and fusA1. Compared to the wild-type (WT), the evolved strains show a different growth rate and different metabolic activity, suggesting they have an altered fitness. mexT mutants were less susceptible to C-30 than WT strains; they also show reduced susceptibility to chloramphenicol and ciprofloxacin, two substrates of the MexEF-OprN efflux pump. fusA1 mutants had a decreased susceptibility to aminoglycoside antibiotics, and an increased susceptibility to chloramphenicol. The decreased antimicrobial susceptibility and decreased susceptibility to C-30 was accompanied by a changed metabolic activity profile during treatment. The expression of mexE was significantly increased in mexT mutants and induced by C-30, suggesting that MexEF-OprN exports C-30 out of the bacterial cell. The in vitro production of virulence factors as well as virulence in two in vivo models of the strains evolved in the presence of C-30 was unchanged compared to the virulence of the WT. Finally, the evolved strains were less susceptible towards tobramycin (alone and combined with C-30) in an in vivo mouse model. In conclusion, this study shows that mutations acquired during experimental evolution of P. aeruginosa biofilms in the presence of tobramycin and C-30, are accompanied by an altered fitness, metabolism, mexE expression and in vitro and in vivo antimicrobial susceptibility.

Funder

Bijzonder Onderzoeksfonds UGent

FWO-Vlaanderen

Lundbeckfonden

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3