Sequence-specific cleavage of hepatitis C virus RNA by DNAzymes: inhibition of viral RNA translation and replication

Author:

Roy Swagata1,Gupta Nidhi2,Subramanian Nithya1,Mondal Tanmoy1,Banerjea Akhil Chandra2,Das Saumitra1

Affiliation:

1. Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India

2. National Institute of Immunology, Department of Virology, New Delhi-110067, India

Abstract

DNAzyme (Dz) molecules have been shown to be highly efficient inhibitors of virus replication. Hepatitis C virus RNA translation is mediated by an internal ribosome entry site (IRES) element located mostly in the 5′ untranslated region (UTR), the mechanism of which is fundamentally different from cap-dependent translation of cellular mRNAs, and thus an attractive target for designing antiviral drugs. Inhibition of HCV IRES-mediated translation has drastic consequences for the replication of viral RNA as well. We have designed several Dzs, targeting different regions of HCV IRES specific for 1b and also sequences conserved across genotypes. The RNA cleavage and translation inhibitory activities of these molecules were tested in a cell-free system and in cell culture using transient transfections. The majority of Dzs efficiently inhibited HCV IRES-mediated translation. However, these Dz molecules did not show significant inhibition of coxsackievirus B3 IRES-mediated translation or cap-dependent translation of reporter gene, showing high level of specificity towards target RNA. Also, Northern blot hybridization analysis showed significant cleavage of HCV IRES by the Dz molecules in Huh7 cells transiently transfected with the HCV–FLuc monocistronic construct. Interestingly, one of the Dzs was more effective against genotype1b, whereas the other showed significant inhibition of viral RNA replication in Huh7 cells harbouring a HCV 2a monocistronic replicon. As expected, mutant-Dz failed to cleave RNA and inhibit HCV RNA translation, showing the specificity of inhibition. Taken together, these findings suggest that the Dz molecule can be used as selective and effective inhibitor of HCV RNA replication, which can be explored further for development of a potent therapeutic agent against HCV infection.

Publisher

Microbiology Society

Subject

Virology

Reference29 articles.

1. DNAzyme-mediated silencing of ornithine decarboxylase;Ackermann;Biochemistry,2005

2. DNA ribonucleases that are active against intracellular hepatitis B viral RNA targets;Asahina;Hepatology,1998

3. Potential therapeutic application of DNA enzymes and siRNAs against viral and cellular genes;Banerjea,2004

4. Novel insights into hepatitis C virus replication and persistence;Bartenschlager;Adv Virus Res,2004

5. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication;Blight;J Virol,2002

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3