Magnesium transport in Salmonella typhimurium: regulation of mgtA and mgtCB during invasion of epithelial and macrophage cells

Author:

Smith Ronald L.,Kaczmarek Michelle T.,Kucharski Lisa M.,Maguire Michael E.

Abstract

Salmonella typhimurium contains two inducible Mg2+ transport systems, MgtA and MgtB, the latter encoded by a two-gene operon, mgtCB. Mg2+ deprivation of S. typhimurium increases transcription of both mgtA and mgtCB over a thousandfold and a similar increase occurs upon S. typhimurium invasion of epithelial cells. These increases are mediated by the phoPQ two-component signal transduction system, an essential system for S. typhimurium virulence. It was therefore hypothesized that expression of MgtA and MgtCB is increased upon invasion of eukaryotic cells because of a lack of intravacuolar Mg2+. However, when S. typhimurium was grown at pH 5.2, the capacity of the constitutive CorA transporter in mediating Mg2+ was greater than that at pH 7.4. Furthermore, induction of mgtA and mgtCB transcription was greater in the presence of a wild-type corA allele than in its absence. This implies that intravacuolar S. typhimurium could obtain sufficient Mg2+ via the CorA system. The effect of acid pH on mgtA and mgtCB transcription was also measured. Compared to induction at pH 7.4, exposure to pH 5.2 almost completely abolished induction of mgtA at low Mg2+ concentrations but diminished induction of mgtCB only twofold. Adaptation of cells to acid pH by overnight growth resulted in normal levels of induction of mgtA and mgtCB at low Mg2+ concentrations. These results imply an additional level of regulation for mgtA that is not present for mgtCB. Conversely, repression of mgtA and mgtCB expression by increased extracellular Mg2+ was relatively insensitive to acid. Transcription of both loci was strongly induced upon invasion of the Hep-2 or CMT-93 epithelial-like or J774 macrophage-like cell lines. However, the presence or absence of functional alleles of either or both mgtA or mgtCB had no effect on invasion efficiency or short-term survival of S. typhimurium within the eukaryotic cells. It was concluded that the strong Mg2+-dependent induction of mgtA and mgtCB upon invasion of eukaryotic cells is not required because S. typhimurium lacks sufficient Mg2+ during eukaryotic cell invasion and initial intravacuolar growth.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3